

TAS Code Results for the Third High Lift Prediction Workshop

Yasushi Ito, Mitsuhiro Murayama & Kazuomi Yamamoto

Japan Aerospace Exploration Agency (JAXA)

.

Kentaro Tanaka & Tohru Hirai Ryoyu Systems Co., Ltd.

PID: 011

3rd High Lift Prediction Workshop Denver, CO June 3-4, 2017

Summary of cases completed: TAS code

Case	Alpha=8, Fully turb, grid study	Alpha=16, Fully turb, grid study	Other
1a (full gap)	YES	YES	
1b (full gap w adaption)	NO	NO	
1c (partial seal)	NO	NO	
1d (partial seal w adaption)	NO	NO	

Turbulence model: SA-noft2-R ($C_{rot} = 1$)

Case	Polar, Fully turb	Polar, specified transition	Polar, w transition prediction	Other
2a (no nacelle)	YES	NO	NO	
2b (no nacelle w adaption)	NO	NO	NO	
2c (with nacelle)	YES	NO	NO	
2d (with nacelle w adaption)	NO	NO	NO	

Case	2D Verification study	Other
3	YES	

Summary of cases completed: TAS code

Case	Alpha=8, Fully turb, grid study	Alpha=16, Fully turb, grid study	Other
1a (full gap)	YES	YES	
1b (full gap w adaption)	NO	NO	
1c (partial seal)	NO	NO	
1d (partial seal w adaption)	NO	NO	

Turbulence model: SA-noft2-R-QCR2000 ($C_{rot} = 1$)

Case	Polar, Fully turb	Polar, specified transition	Polar, w transition prediction	Other
2a (no nacelle)	YES	NO	NO	
2b (no nacelle w adaption)	NO	NO	NO	
2c (with nacelle)	YES	NO	NO	
2d (with nacelle w adaption)	NO	NO	NO	

Case	2D Verification study	Other
3	NO	

Summary of code and numerics used

- TAS (Tohoku Univ. Aerodynamic Simulation) code
 - Unstructured hybrid RANS solver
 - Originally developed by Nakahashi et al.
- Quadratic Constitutive Relation (QCR) by Spalart
 - Well predicting side-of-body separation in transonic flows based on our previous experience (e.g., Yamamoto et al., AIAA Paper 2010-4222).
 - Evaluated for high-lift cases in this study (also evaluated in HiLiftPW-2).

	TAS code	
Grid type	Unstructured hybrid grids	
Discretization	Cell-vertex finite volume	
Convection flux	HLLEW 2 nd -order with Venkatakrishnan's limiter	
Time integration	LU-Symmetric Gauss-Seidel	
Turbulence model	SA-noft2-R (C_{rot} = 1) ($QCR \ off$) or SA-noft2-R-QCR2000 (C_{rot} = 1) ($QCR \ on$)	

Case 3 Verification study results

- Based on the finest mesh,
 - Compared w FUN3D + SA, TAS code + SA predicts similar $C_1 \& C_d$.
 - TAS code + SA-noft2-R (C_{rot} = 1) predicts smaller C_d than TAS code + SA by 0.6 drag counts mostly because of the difference in $C_{d,v}$.

Brief overview of grid systems

Grid System	Case(s)	Problems/Issues
Committee	1a	Grid quality OK
(B3-HLCRM_UnstrHexPrismPyrTet_PW)	Submitted feedback	
Coarse: 8.3 M nodes Me	edium: 27.0 N	A nodes Fine: 119 M nodes
Committee	2a Wing deformation effect?	
(D-JSM_UnstrMixed_JAXA)	2c Mesh resolution enough to predict C _{Lm}	
Case 2a (WB): 50.4 M nodes		Case 2c (WBNP): 59.0 M nodes

MEGG3D – Mixed Element Grid Generator in 3D

- Unstructured hybrid surface/volume grid generator (prisms, hexes, tets & pyramids)
- The **Automatic Local Remeshing** enabled to reuse a volume grid generated around a baseline geometry (in this case, WB) when an additional geometry (NP) was inserted.
 - New grids were generated automatically.
 - The same elements were used except those around the additional geometry, so that its effect can be evaluated more precisely.

Case 1a HL-CRM $\alpha = 8^{\circ}$

- Large flow separation predicted on the flaps.
- Smaller flow separation on the flaps with a finer mesh. \rightarrow Lager C_L & smaller C_M
- Slightly smaller flow separation predicted by the cases w/o QCR.

a=8.0,SA-noft2-R
 a=8.0,SA-noft2-R-QCR2000

1.76

1.70

1.62

Case 1a HL-CRM $\alpha = 16^{\circ}$

- Smaller flow separation predicted by a finer mesh and by SA w/o QCR.
- With the fine mesh, flow separation almost disappears on the inboard flap & small flow separation on the outboard flap.

a=16.0,SA-noft2-R a=16.0,SA-noft2-R-QCR2000

2.38

2.36

2.32

2.30

2.24

Cases 2a & 2c JSM C_L - α

• Difference in CL at high α due to larger flow separation on the outboard wing when QCR is turned on.

Cases 2a & 2c – JSM C_L - C_D

Cases 2a & 2c – JSM C_L - C_M

Cases 2a & 2c – JSM $C_p \alpha = 4.36^{\circ}$

- Both QCR on/off mostly agree well with experiment.
- QCR on predicts flow separations slightly larger (not visible in the Cp graphs).
- Compared with experiment, a similar tendency was observed at α = 10.47°.
- QCR off
- QCR on

Cases 2a & 2c – JSM $\alpha = 4.36^{\circ}$

Similar oil flow images

Cases 2a & 2c – JSM $C_p \alpha = 10.47^{\circ}$

Both QCR on/off mostly agree well with experiment.

- QCR off
- QCR on

Cases 2a & 2c – JSM $\alpha = 10.47^{\circ}$

Similar oil flow images

Cases 2a & 2c – JSM $C_p \alpha = 14.54^{\circ}$

- QCR on/off predict similar Cp distributions except at the outboard section.
- QCR off agrees better with experiment even at H-H section.

- QCR off
- QCR on

Cases 2a & 2c – JSM α = 14.54°

Difference in the size of flow separation between QCR on & off

Cases 2a & 2c – JSM $C_p \alpha = 18.58^{\circ}$

 QCR on/off predict similar Cp distributions and large flow separation at H-H section, which was not observed in the experiment.

- QCR off
- QCR on

Cases 2a & 2c – JSM α = 18.58°

Difference in the size of flow separation between CFD & WTT

Cases 2a & 2c – JSM $C_p \alpha = 20.59^{\circ}$

- QCR on predicts large flow separation on the outboard wing.
- QCR off also predicts large flow separation at H-H section.

- QCR off
- QCR on

Cases 2a & $2c - JSM \alpha = 20.59^{\circ}$

HiLiftPW-3, Denver CO, June 2017

Cases 2a & 2c – JSM $C_p \alpha = 21.57^{\circ}$

- QCR on/off predict slightly different Cp distributions even at inboard sections.
- QCR off predicts better Cp distribution at G-G section.

- QCR off
- QCR on

Cases 2a & 2c – JSM α = 21.57°

Difference in the size of flow separation between CFD & WTT

HiLiftPW-3, Denver CO, June 2017

Case 2a JSM C_l - α

- QCR off agreed better with experiment in Cases 2a & 2c.
- QCR off predicted higher $C_{l_{max}}$ with the JAXA medium grid.
 - Does the laminar-to-turbulent transition need to be considered?
 - JAXA has provided the info.
 - Does wing deformation influence the prediction?
 - How about the mesh density?

Case 2a JSM Wing Deformation for Meshes

- Polynomial approximation using displacement data measured at 32 markers on the main wing element in a wind tunnel test.
 - Quartic approximation to estimate wing bending and twisting
 - Yasue, K. and Ueno, M., "Model Deformation Corrections of NASA Common Research Model Using Computational Fluid Dynamics," *Journal of Aircraft*, Vol. 53, No. 4, July 2016, pp. 951-961, DOI: 10.2514/1.c033445.
 - Le Sant, Y. "A Model Deformation Method Applied to PSP Measurements," Proceedings of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003.

$$x_d = x_a$$
, $y_d = y_a$, $z_d = z_a + y_a^2 o_2 + y_a^3 o_3 + y_a^4 o_4 + x_a y_a t_1 + x_a y_a^2 t_2 + x_a y_a^3 t_3 + x_a y_a^4 t_4$ $\mathbf{x}_a = (x_a, y_a, z_a)$ and \mathbf{x}_d are in the coordinate system obtained by rotating the

 $\mathbf{x}_a = (x_a, y_a, z_a)$ and \mathbf{x}_d are in the coordinate system obtained by rotating the initial coordinate system around the x-axis by the wing dihedral angle, 3.0°.

- Only y < -311.9 mm is deformed.
- Gap, overlap and deflection angle of the slat and the flap are not changed.
- Currently, Case 2a (nacelle/pylon off) using WTT data at $\alpha = 20^{\circ}$ only.

Case 2a JSM – No Wing Deformation

Case 2a JSM – Wing Deformation Applied

Case 2a JSM – C_L - α

- TAS code predicted higher $C_{l_{max}}$ with JAXA medium grid.
- Does wing deformation influence the prediction?
 - No, according to TAS code with the medium grid for Case 2a.
 - Finer meshes are needed for further evaluation.

Cases 2a & 2c JSM Wing Deformation for CAD Model

- The same polynomial approximation is applied to CAD models on CATIA by defining 10 sections on the wing reference plane (WRP).
 - Case 2a (nacelle/pylon off) at $\alpha = 4^{\circ}$, 10°, 14°, 20°, 21°
 - Case 2c (nacelle/pylon on) at $\alpha = 4^{\circ}$, 10° , 14° , 18° , 20° , 21°
- The deformed CAD models to be released for public.

- Example: Case 2a at $\alpha = 21^{\circ}$
- Before deformation:
 - Black dashed lines on WRP & corresponding red sections
 - Red dots from a wind tunnel test as reference
- After deformation:
 - Black solid lines on WRP & corresponding blue sections
 - Blue dots from a wind tunnel test

Case 2a (nacelle/pylon off) JSM Deformed CAD Models

• Displacement in the z direction Δz at the retracted wing leading and trailing edges and change in twist angle $\Delta\theta$

Case 2c (nacelle/pylon on) JSM Deformed CAD Models

• Displacement in the z direction Δz at the retracted wing leading and trailing edges and change in twist angle $\Delta\theta$

Summary

- Large flow separation was observed on the HL-CRM flaps, but with the B3 fine mesh, much smaller separation was observed at $\alpha = 16^{\circ}$.
- When QCR in the SA turbulence model is turned on,
 - Slightly larger flow separation was observed with HL-CRM and JSM, which was similar to the HiLiftPW-2 DLR F11 cases.
 - Large flow separation was observed from JSM slat tracks at high α .
- JSM wing without nacelle/pylon was deformed based on marker displacement measurements in a wind tunnel test at $\alpha = 20^{\circ}$.
 - No significant effect was observed in aerodynamic coefficients with the JAXA medium grid.
 - Cases 2a & 2c JSM CAD models were deformed at several angles of attack for public release, to be available on the HiLiftPW web site shortly.
 - The effect of mesh density needs to be evaluated.